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Abstract

This paper describes a numerical method for the direct numerical simulation of Navier–Stokes flows with one or

more solid spheres. The particles may be fixed or mobile, and they may have different radii. The basic idea of the

method stems from the observation that, due to the no-slip condition, in the reference frame of each particle, the veloc-

ity near the particle boundary is very small so that the Stokes equations constitute an excellent approximation to the full

Navier–Stokes problem. The general analytic solution of the Stokes equations can then be used to ‘‘transfer’’ the no-slip

condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the

irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used.

The method is validated by a detailed comparison with spectral solutions for the flow past a sphere at Reynolds num-

bers of 50 and 100. The existence in these situations of a Stokes region near the particle is explicitly demonstrated. Other

numerical experiments to show the performance of the code are also described. To illustrate the power and efficiency of

the method, a simulation of decaying homogeneous turbulence in a cell containing 100 moveable spheres is described.

As implemented here, the method can only be applied to simple body shapes such as spheres and cylinders. Extensions

to more general situations are mentioned in the last section.
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1. Introduction

This paper describes the extension of our numerical method PHYSALIS for the simulation of particles sus-

pended in a viscous fluid described in [1,2] to three spatial dimensions and second order time- and space-

accuracy.
One of the main motivations for the development of this method is the desire to carry out simulations of

turbulent disperse two-phase flows. This is an active research area in which much of the work to date has

been based on point-particle models (see e.g. [3–9]). The limitations of these models are well known. Even

leaving aside the difficulty of accurately parameterizing the fluid-particle forces, this approximation may

only be justified for dilute systems and very small particles, such as are encountered in dusty gases, electro-

static separators, and others. In more concentrated systems, such as fluidized beds, solids transport, and

others, however, the fact that the particles have a finite size plays a determinant role in the physics of

the problem and cannot be neglected.
In the past decade several methods have been proposed to simulate in an efficient manner the flow

around suspended particles. Examples are the early calculations of Joseph and collaborators (see e.g.

[10,11]), the more recent work of this group (see e.g. [12–14]) and others (e.g. [15]) with a fixed finite-element

mesh, the finite-element calculations of [16,17], and the CHIMERA method (see, e.g., [18,19]). These applica-

tions are a special case of problems with complex boundaries, which are currently a subject of active re-

search in the computational fluid dynamics community. In particular, the immersed boundary method,

originally developed by Peskin [20] (see also [21]), and later used e.g. in [22,23], has attracted considerable

interest in the last few years giving rise to so-called Cartesian grid methods (see e.g. [24,25]) and other im-
mersed boundary methods (see e.g. [26–32,71]). Methods based on lattice-Boltzmann formulations have

also shown considerable promise and are being pursued by a number of investigators [33–36]. An interest-

ing combination of the lattice-Boltzmann and immersed boundary approaches is presented in [37,38].

The method described in the present paper differs from those mentioned above. It is based on the obser-

vation that, because of the no-slip boundary condition on its surface, the flow in the immediate neighbor-

hood of a particle differs little from a rigid-body motion and can be linearized about this rigid-body motion

with a negligible error. It is shown that this specific structure of the flow manifests itself in certain non-local

relations among the flow fields (velocity, pressure, vorticity) which can be captured by an analytic solution.
Thus, rather than solving the problem with the particle in place, one can impose this relationship directly on

the nodes of a fixed regular grid and effectively remove the particle. In this way, the actual boundary of the

particle, with its usually complex relation to the underlying regular grid, can be replaced by a simpler

boundary consisting of grid nodes. The non-local constraint on the flow fields is imposed by matching

the local analytic solution, valid in the neighborhood of each particle, to a global solution valid elsewhere

in the domain. The reconciliation of the two solutions is carried out iteratively.2

The global solution is calculated by a second-order finite-difference projection method, while the local

solution is expressed as a spectrally convergent series. In this respect, our method is similar to that of
[40].3 While in [40] use was made of an expansion in Chebyshev polynomials, a transformation of the

dependent variables enables us to use Stokes flow expansions which are better suited for the simulation

of spherical particles in which we are interested. It should be explicitly noted that our use of Stokes flow

theory in no way restricts our method to low Reynolds number. Indeed, as shown in Section 4.2, our method

gives very accurate results for steady flow past a sphere at Reynolds numbers of 50 and 100.

Unlike some other methods, our procedure does not require approximating the particle shape in a ‘‘stair-

case’’ way (see e.g. [35,41]) nor diffusing its boundary over one or more cells (see e.g. [38,42]). The no-slip
2 The convergence of this procedure was studied in [39] for some model problems.
3 We are grateful to one of the referees for pointing out this interesting work to us.
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condition at the particle surface is enforced exactly and, as the number of degrees of freedom per particle is

increased, the error decreases spectrally. On the other hand, as presented here, the method is only applica-

ble to spherical particles. As discussed in the last section, extensions are possible although spectral conver-

gence may have to be abandoned.

Although very different in detail, PHYSALIS is in some sense related to the method of artificial boundary
conditions of Givoli, Keller, and collaborators [43–46] and in particular to the Dirichlet-to-Neumann map.

The reconciliation of the local and global solutions is also reminiscent of the situation encountered in the

domain decomposition method (see e.g. [47–49]) and, in some implementations, reminiscent of the capac-

itance matrix method (see e.g. [50–52]). In may respects, these are more analogies than similarities, as the

differences with all of these methods are quite substantial.
2. Reduction to the rest frame

The computational domain contains a viscous Newtonian fluid in which several (equal or unequal)

spherical particles are suspended. In order to show how a local solution valid near each particle can be de-

rived, we consider the flow in the neighborhood of a generic particle, having instantaneous translational

and angular velocities w(t) andX(t), respectively, and adopt a non-inertial reference frame in which the par-

ticle is at rest. If u and U denote the flow velocities in the particle rest frame and the original inertial frame,

respectively, we then have
U ¼ uþ wþX� r; ð1Þ
in which r is the position relative to the particle center. The momentum equation in the rest frame takes the

form
q
ou

ot
þ ðu � rÞuþ 2X� u

� �
¼ �rp þ lr2uþ qg� q½ _wþ _X� rþX� ðX� rÞ�; ð2Þ
to be solved subject to the incompressibility constraint and to the boundary condition u = 0 on the particle

surface. In (2) q and l are the fluid density and viscosity, p is the pressure, and g the body force; dots denote

Lagrangian time derivatives following the particle.

The change of variables
u ¼ ~uþ r5 � a5

10mr3
_X� r; p ¼ ~p þ 1

2
q X� rð Þ2 þ qðg� _wÞ � r; ð3Þ
in which r = jrj and m is the kinematic viscosity, brings (2) into the form
q
ou

ot
þ ðu � rÞuþ 2X� u

� �
¼ �r~p þ lr2~u; ð4Þ
with ~u ¼ 0 on the particle surface.

It will be noted that the left-hand side of (4) contains the original velocity in the particle rest-frame, u,

which equals zero on the particle surface. Therefore, by continuity, this quantity will be small near the par-
ticle and, therefore, there is a region adjacent to the particle where the left-hand side of (4) is small. Thus,

locally, ð~u; ~pÞ approximately satisfy
�r~p þ lr2~u ¼ 0; r � ~u ¼ 0; ð5Þ

i.e., the Stokes equations. Naturally, the extent of the spatial region where (5) are a good approximation to
(4) becomes smaller and smaller as the Reynolds number increases but, for any finite Reynolds number,

there is a non-vanishing region where (5) are applicable with but a small error.
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The general solution of the Stokes equations (5) in the presence of a spherical boundary was given by

Lamb ([53, p. 594]; see also [54, Chapter 4]) and may be written in the form
~u ¼ m
a2
X1
n¼1

1

ðnþ 1Þð2nþ 3Þ
1

2
ðnþ 3Þr2rpn � nrpn

� �
þ m
a

X1
n¼1

ar/n þr� rvnð Þ½ �

þ m
a2
X1
n¼1

1

nð2n� 1Þ � 1

2
ðn� 2Þr2rp�n�1 þ ðnþ 1Þrp�n�1

� �
þ m
a

X1
n¼1

ar/�n�1 þr� rv�n�1ð Þ½ �; ð6Þ

~p ¼ lm
a2

p0 þ
X1
n¼1

ðpn þ p�n�1Þ
" #

. ð7Þ
The pn, /n, vn are regular solid spherical harmonics of order n, while those carrying a negative index are

singular harmonics of the same order. Thus, e.g.
pn ¼
r
a

� �nXn
m¼0

½Pnm cosmuþ ~Pnm sinmu�Pm
n ðcos hÞ; ð8Þ
where Pnm and ~Pnm are dimensionless coefficients, Pm
n is an associated Legendre function, and r, h, and u are

spherical coordinates centered at the particle center. The other harmonics /n, vn are written in a similar way

with dimensionless coefficients Unm; ~Unm; Xnm, and ~Xnm, respectively. In (6) and (7) the regular harmonics
represent the incident flow and the singular ones the disturbance induced by the particle.

It is readily shown that the form of the singular harmonics dictated by the condition of vanishing veloc-

ity on the particle surface is
p�n�1 ¼ � 1

2

2n� 1

nþ 1
n½pn þ 2ð2nþ 1Þ/n�

a
r

� �2nþ1

; ð9Þ

/�n�1 ¼ � a2

4

n
nþ 1

2nþ 1

2nþ 3
pn þ 2ð2n� 1Þ/n

� �
a
r

� �2nþ1

; ð10Þ

v�n�1 ¼ � a
r

� �2nþ1

vn. ð11Þ
Upon substitution into (6) and (7), these relations express the local fields near the particle in terms of the

incident flow.

The vorticity field corresponding to (6) is
~x ¼ m
a2
X1
n¼1

1

nþ 1
ðr�rpnÞ �

1

n
ðr�rp�n�1Þ þ ar�r½r� ðvn þ v�n�1Þ�

� �
. ð12Þ
Detailed formulae for the components of u and x are given in Appendix A.

The particle position y and velocity w are updated using
dy

dt
¼ w; m

dw

dt
¼ Fhd þ Fe; ð13Þ
where m is the particle mass, Fhd the hydrodynamic force, and Fe the external force. The particle angular

velocity X is updated from
I
dX
dt

¼ Lhd þ Le; ð14Þ
where I is the moment of inertia, Lhd the hydrodynamic couple, and Le the external couple. From X
one could readily calculate the change in the particle orientation. However, for spherical homogeneous
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particles, this degree of freedom is uncoupled from the dynamics. In the original inertial frame, the hydro-

dynamic force and couple acting on the particle are given by
Fhd ¼ qvð _w� gÞ þ plmðP 11 þ 6U11; ~P 11 þ 6~U11; P 10 þ 6U10Þ; ð15Þ
Lhd ¼ qva2 _Xþ 8plma X 11; ~X 11;X 10

� �
. ð16Þ
It should be stressed that (6) and (7) represent the most general Stokes flow compatible with the bound-
ary conditions at the particle surface. Clearly, no assumptions or restrictions about this flow (in particular,

about its behavior far from the particle) have been introduced. The plan of the calculation consists in deter-

mining the coefficients of the local solution in the neighborhood of each particle by matching the fields

given by (1) and (3) with (6) and (7), with those numerically computed.
3. Implementation

In order to implement the matching between the local and global fields mentioned in the previous sec-

tion, we cover the entire domain by a regular finite-difference grid without regard for the presence of the

particles. Each particle is surrounded by a cage of cells straddling the body surface. An example is shown

in Fig. 1 and a two-dimensional cut is shown for greater clarity in Fig. 2; the algorithm used to construct the

cages is described later. We use a standard staggered grid arrangement, with pressure at cell centers (crosses

in Fig. 2) and velocities at the midpoints of cell sides (arrows). The z-vorticity component at position (i + 1/

2, j + 1/2,k) is calculated from
ðxzÞiþ1=2;jþ1=2;k ’
ðuyÞiþ1;jþ1=2;k � ðuyÞi;jþ1=2;k

Dx
�
ðuxÞiþ1=2;jþ1=2;k � ðuxÞiþ1=2;j;k

Dy
; ð17Þ
where Dx and Dy are the mesh spacings, and, therefore, it resides at the midpoint of cell edges (�, in Fig. 2).

The computational procedure can be summarized as follows. Suppose that a provisional estimate of

velocity and pressure fields is available; this could be, for example, the velocity field at the previous time
step or the previous iteration. From this estimate, provisional auxiliary fields ~p and ~x, defined in (3) can

be calculated and the vorticity found by using (17). Then, after truncating the summations in Eqs.

(A.2)–(A.8) for pressure, velocity, and vorticity to a finite number of terms Nc:

(1) For each particle, let 1, 2, . . ., Np be the pressure nodes and 1, 2, . . ., Nx the vorticity-component

nodes of the cage. Match the provisional ~p and ~x to the analytic expressions (7) and (12) at these

nodes to generate a linear system for the coefficients Pnm, Unm, Xnm, and their tilde counterparts.

In principle, the maximum number of coefficients that can be determined in this way equals the num-
ber of cage nodes although, as explained below, it is necessary to use fewer coefficients. The linear

system has therefore a rectangular matrix and is solved in a least square sense (see below).

(2) By using the values of the coefficients determined at the previous step, compute from the analytic for-

mulae (1), (3), and (6) the velocity at the velocity points 1, 2, . . ., Nv of the cage surrounding the

particle.

(3) For each particle, recalculate new position, velocity, angular velocity, and cage.

(4) Solve the full Navier–Stokes equations on the finite-difference grid imposing the new velocity field as

boundary condition on the velocity nodes of the cage of each particle.
(5) Calculate the corresponding pressure and vorticity, return to step 1, and repeat until convergence.

As will be explained in the next section, in executing step 4, it is efficient to solve for the flow field over

the entire grid, disregarding the presence of the particles. The velocity field outside the cages is the one that
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Fig. 1. Perspective view of a particle and associated cage. Black disks: pressure points; triangles: vorticity points; squares: velocity

points.
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is desired. The field inside the cages is the correct solution of another flow problem, in which the flow is

driven by the imposed velocity on the cage nodes: this solution is not unphysical – it is simply irrelevant

for the purposes of the calculation and can be disregarded. It should be stressed that the solution procedure

is devised in such a way that, other than for satisfying a common velocity boundary conditions at the cage

nodes, the solutions inside and outside the cages are completely uncoupled, so that any �contamination� of
the latter by the former is avoided. In particular there is no continuity or other relation satisfied by the

stresses across the cage surface. The final flow field is given by the finite-difference solution outside
the cages, and by the analytical representation (6) and (7) in the thin region between each particle and

the surrounding cage.

We now turn to some details of the implementation; additional information can be found in [1].



Fig. 2. A two-dimensional cut across the particle of the previous figure showing some nodes of a typical cage: +, pressure points; �,
vorticity points; !, horizontal velocity points; ›, vertical velocity points.
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3.1. Flow solver

As explained before, the calculation progresses from time level tn to tn + 1 = tn + Dt by reconciling in an

iterative fashion the local analytic solution for each particle with the finite-difference one. Let j be the coun-
ter for these iterations.

For each iteration, the first step is executed by the second-order-accurate projection method described in

[55] suitably modified for the present purposes as we now explain. A provisional estimate u* of the new

velocity uj + 1 is calculated from
u� � un

Dt
þ 1

q
rhpj�1=2 ¼ � u � rhuð Þjþ1=2 þ 1

2
mr2

h un þ u�ð Þ; ð18Þ
where the convective term (u Æ $hu)
j + 1/2 is calculated by the second-order Adams–Bashforth method and the

diffusive termr2
hðun þ u�Þ by the Crank–Nicholsonmethod;$h denotes the spatial discretization on the finite-

difference grid with spacing h in all directions. In the examples described below, at the outer boundary of the

computational domain we have Dirichlet, periodicity, or outflow boundary conditions. In solving (18), these

conditions are imposed directly on u*. At the cage nodes, u* is set equal to the velocity obtained from the ana-

lytic representation of the solution calculated using the most recently updated values of the coefficients.

The pressure is given by
rhpjþ1=2 ¼ rhpj�1=2 þrh/
jþ1 � 1

2
mDtrhr2

h/
jþ1; ð19Þ
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where
r2
h/

jþ1 ¼ q
rh � u�
Dt

� 1

h
Phnc � rh/

jþ1. ð20Þ
Here, Ph is a projector which singles out the cage nodes [56,1,2], and nc is the unit normal directed outward

from the cage. As an example (see [2]), some of the relevant terms of (20) would be
1

h

/jþ1
iþ1;j;k � /jþ1

i;j;k

h
�
/jþ1

i;j;k � /jþ1
i�1;j;k

h

 !
þ � � � ¼ q

rh � u�
Dt

�
/jþ1

i;j;k � /jþ1
i�1;j;k

h2
ð21Þ
in which the dots in the left-hand side stand for the remaining terms of the discretized Laplacian. At

convergence, this deferred-correction approach effectively enforces a zero-normal-gradient condition on

the cage nodes without the necessity of recognizing them as internal boundaries. This feature enables us

to use fast Poisson solvers for (20). It may also be noted that, at convergence, /jþ1
i�1 cancels on the two

sides of (21) so that there is no coupling between the pressure fields inside and outside the particle. In

view of this feature, how the values of /j+1 at the nodes internal to the particles are initialized is
immaterial. Eq. (20) is implicit in /j+1 and is solved by iteration. Since these iterations are embedded

in the outer iteration procedure which updates the coefficients of the analytic solution, it is not neces-

sary to adopt a very strict criterion for their termination. At the external boundary of the computa-

tional domain we impose
n � rh/
jþ1 ¼ 0; ð22Þ
where n is the outward unit normal. The final velocity at the end of the iteration is given by
ujþ1 ¼ u� � Dt
q
rh/

jþ1. ð23Þ
At the end of each iteration, the position y, velocity w, and angular velocity X of each particle are

updated by a second-order discretization of (13) and (14):
wjþ1 ¼ wn þ Dt
2m

ðFjþ1
hd þ Fn

hd þ Fnþ1
e þ Fn

eÞ; yjþ1 ¼ yn þ Dt
2
ðwjþ1 þ wnÞ; ð24Þ

Xjþ1 ¼ Xn þ Dt
2I

ðLjþ1
hd þ Ln

hd þ Ljþ1
e þ Ln

eÞ. ð25Þ
As described, the procedure contains two iterations, an inner one, Eq. (20), to solve the equation for /,
and an outer one to synchronize the expansion coefficients with the flow field. The first iteration can be

eliminated by avoiding the use of a fast solver for the Poisson equation. The boundary condition n Æ $/
would be imposed directly rather than iteratively as in (20), and the equation would then be solved only

outside the particle cages rather than everywhere. The second iteration is required by the second-order
time-accuracy of the scheme, like other second-order methods (see e.g. [32]). If one were to use a very small

time step, one could advance the flow field, calculate the coefficients from p and x as before, use these coef-

ficients to generate new boundary conditions for u at the cage nodes, advance the flow field by another step,

and so forth. In this case, the time-accuracy would evidently decrease to first order, like other methods that

do not use iterative procedures (see e.g. [26–29,31]).
3.2. Truncation and matching

Truncation of the expansions for the flow fields at order n = Nc retains (Nc + 1)2 coefficients ðPnm; ~PnmÞ,
Nc(Nc + 2) coefficients ðUnm; ~UnmÞ, and ðXnm; ~XnmÞ for a total of 3Nc(Nc + 2) + 1 coefficients.



300 Z. Zhang, A. Prosperetti / Journal of Computational Physics 210 (2005) 292–324
As noted before, at each iteration, the coefficients (Pj+1,Uj+1,Xj+1) and their tilde counterparts are up-

dated by matching the computed values of pj+1 (obtained from pj+1/2 and pn� 1/2 by extrapolation) and

xj+1 to the Stokes analytic expressions (7) and (12) on the cage nodes. If h is the grid spacing and a the

particle radius, there are about 4pa2/h2 cage nodes for each scalar field (i.e. p and the three components

of x). Therefore, the matching operation gives rise to a linear system of approximately 4 · (4pa2/h2)
equations.

As already mentioned, in general it is not possible to retain these many coefficients. A first consideration

is aliasing. One cannot include modes of such a high order that they cannot be represented on the finite-

difference grid. A very crude estimate of this upper limit can be obtained by noting that the shortest wave

that can be represented on a grid with a spacing h is of the order of 2h. Over a length of the order of 2a, one

can fit a/h waves with this wavelength, which therefore puts an upper limit of this order on the maximum

value of Nc. Our numerical experience, however, indicates that Nc should be taken smaller than this value.

We are at present unable to give a precise guideline concerning this aspect of our method, for which we have
to rely on the numerical experience described later.

In [57] it is suggested that a consistent truncation would retain Nc coefficients ðPnm; ~PnmÞ, (Nc � 2)

ðUnm; ~UnmÞ, and (Nc � 1) ðXnm; ~XnmÞ. We tried this truncation without any appreciable change in the results.

The linear system for the coefficients has a rectangular matrix with many more rows than columns and is

solved by the singular value decomposition algorithm, which is equivalent to a least-squares procedure

when all singular values are retained as here (see e.g. [58,59]). Use of this algorithm also enables us to con-

sider all three components of the vorticity, which would give rise to a nearly singular matrix if the number

of unknowns were equal to the number of equations.

3.3. Cage

We now turn to an explanation of the procedure followed to generate the cages used in the matching of

the coefficients with the finite-difference solution. As will be explained later, in some cases it may be con-

venient to center the cage at a point other than the center of the actual particle. We refer to the spherical

volume centered at the cage center and equal to the particle volume as the ‘‘virtual’’ particle.

(1) The grid node closest to the cage center is located and, around that node, a cubic box is built with

sides equal to the number of grid nodes per diameter plus 4, so as to make sure that the particle plus

a layer of cells sufficient to locate all the cage nodes is entirely contained in it.

(2) All the cells contained in the cage box are examined in turn to test whether their center is inside the

virtual particle. The cage pressure points are identified as the cell centers inside the virtual particle,

which have at least one adjacent cell outside the virtual particle. Examples are the points marked

by black disks in Fig. 3 such as A, B, C, and D.

(3) At the same time as the pressure points are identified, we construct the cage surface (solid line in Fig.
3) as the union of all the faces of the pressure cells which are common to other cells entirely contained

inside the virtual particle which are not pressure cells. This condition prevents a cell surface such as

that separating points C and D in Fig. 3 from being counted as part of the cage interface.

(4) In a staggered grid arrangement, the velocity components are defined at the cell face centers. The cage

velocity components are those velocity nodes which are closest to the pressure nodes, and also closer

to the cage center than the pressure nodes.

(5) In the staggered grid arrangement, vorticity nodes are at the midpoint of the cell edges. For each pres-

sure cell and each vorticity component, therefore, there are 4 possible node positions (Fig. 4(a)). The
one is chosen which is farthest from the center of the virtual particle such as node A in Fig. 4(a). It is

possible that, with this procedure, gaps remain in the vorticity-node cage. An example is shown in Fig.

4(b). In this case nodes such as the one marked by an asterisk in Fig. 4(b) are added.
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Fig. 3. Explanation of the cage construction procedure; see Section 3.3.
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Fig. 4. (a) Left: A, B, C, D denote the four possible node positions for the y-component of vorticity. The one actually chosen is A, the

node farthest from the center O of the virtual particle. (b) Right: Example of a gap (asterisk) that may remain in the vorticity cage

constructed according to the procedure of Section 3.3. The node marked by the asterisk is added to the cage.
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Many of the points used in the algorithm thus fall inside the particle, but this does not create any dif-

ficulty – practical or conceptual – as (6), (7), and (12) provide an analytic continuation of the flow fields

inside the particle provided, of course, that r > 0. As a matter of fact, the possibility of placing the cage

mostly inside the particle permits two particles to come in very near contact, or even overlap slightly.

If the particle moves, a new cage can be centered at each successive position of the particle center, or the
same cage used as long as the particle remains in some neighborhood of the cage center, after which another

cage is used, and so on. In this approach, one would only need to build a set of ‘‘standard cages’’ once at the

beginning of the calculation. Evidently the second method is computationally more efficient, although it

introduces a somewhat greater error as described later.

In this second approach, the lowest-order accuracy procedure is to use the same cage centered at the grid

point (xi,yj,zk) closest to the particle center as long as the latter is within a volume xi � 1
2
h 6 x 6 xi þ 1

2
h, etc.

The cage center will move to a different grid point only when the particle center moves out of this volume.

These abrupt shifts in the cage position influence the smoothness of the time dependence of the hydrody-
namic force and couple. This undesirable feature can be mitigated by using cages centered at several posi-

tions surrounding the grid point (xi,yj,zk). A natural choice is the nine points (xi,yj,zk) and

ðxi � 1
2
h; yj � 1

2
h; zk � 1

2
hÞ, for each one of which the previous procedure generates a different cage. The pro-

cedure can be further refined in an obvious way by including additional cages centered at intermediate

points.

3.4. Spatial resolution

A source of error for the method is its reliance on an approximate solution in the fluid regions between

the particle and the surrounding cage. This error can be reduced by refining the grid, which has the effect of

putting the cage nodes closer to the particle surface. Another possibility (which we have not yet explored)

would be to improve on the Stokes flow solution by approximating the solution of the full nonlinear equa-

tion (4) by a regular perturbation expansion. It may be noted, however, that in practice some control of the

error is built into the procedure as convergence requires that all the flow fields be described by the same set

of coefficients (P,U,X). In the presence of strong nonlinear effects, which are not accounted for in the ana-

lytic solution, one would expect that this condition could not be satisfied and the iterative procedure would
fail to converge. This expectation is borne out by the numerical evidence reported in Section 4.3 and also by

exploratory calculations where we purposely put the cage nodes too far from the particle surface, and

observed either an exceedingly slow convergence rate or convergence failure.

A rough idea of the grid size h necessary for a good numerical accuracy may be found by noting that the

grid points should be well inside the boundary layer for the Stokes approximation to be valid. If the bound-

ary layer thickness is estimated as a=
ffiffiffiffiffiffi
Re

p
, where Re is the Reynolds number expressed in terms of a char-

acteristic velocity and the sphere diameter, we thus have that a/h should be sufficiently larger than
ffiffiffiffiffiffi
Re

p
.

This limit is not different from that applicable to a standard finite-difference calculation.
4. Validation

The method described before and the code that implements it have been subjected to a thorough series of

validation tests.

4.1. Stokes flow

The most basic test of the method is whether a given exact Stokes solution can be reconstructed by the

algorithm. To carry out this test we assign values to some of the coefficients appearing in the exact analytic
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solution of the Stokes equations and use this solution to prescribe the velocity field on the boundary of the

computational domain. We then study to what extent the prescribed coefficients can be recovered by the

algorithm. In carrying out this test it is unnecessary to use a large domain and we choose a cube with a

side of 4 times the sphere radius with the sphere centered at the center of the cube. Furthermore, if

high-order coefficients are assigned as numbers of order 1, the velocity rapidly develops very large gradients
as one moves away from the sphere, which would require a very fine discretization for an accurate finite-

difference calculation. The use of a relatively small domain is suggested also by this consideration. To limit

further the growth of the high-order modes, we also prescribe high-order coefficients as relatively small

numbers.

Table 1 shows the results obtained with two discretizations, a/h = 4 and 8 for A10, C10, and E10 assigned,

in turn, equal to 1. Here and below, the coefficients not shown in the table and the entries left blank indicate

numbers smaller than 0.001. For a/h = 4 we can include in the reconstruction coefficients up to Nc = 3 (a

total of 46). If we include also the Nc = 4 coefficients in the attempted reconstruction, the algorithm di-
verges. It appears that the finite-difference error contaminates the higher-order coefficients which in turn

feed the error back to the boundary conditions at the cage, ultimately causing failure. This interpretation

is supported by the fact that, if we go to higher resolution, a/h = 8, the algorithm converges all the way up
Table 1

Recovery of assigned coefficients (column �Exact�) by the numerical method for different discretizations

Exact Numerical

a/h = 4 a/h = 8

Nc = 3 Nc = 3 Nc = 8

A10 1.0 0.995794 0.999576 0.999383

C10 0.0 0.007844

A30 0.0 �0.001936

A10 0.0 �0.014179 �0.001356 �0.001882

C10 1.0 1.0268 1.00085 1.00137

A30 0.0 �0.008186 �0.00179 �0.001538

A50 0.0 0.00329

E10 1.0 1.00352 1.00011 1.00027

The coefficients not shown in the table and the entries left blank indicate numbers smaller than 0.001. For a/h = 4 coefficients up to

Nc = 3 (for a total of 46) can be included in the reconstruction. An attempt to include also the Nc = 4 coefficients causes the algorithm

to diverge. With a higher resolution, a/h = 8, the algorithm converges all the way up to Nc = 8 (a total of 241 coefficients).

Table 2

Recovery of assigned coefficients (column �Exact�) by the numerical method for a/h = 8

Exact Numerical

A10 0.50000 0.497288

C10 0.50000 0.502856

E10 0.50000 0.499959

A20 0.12500 0.121622

C20 0.12500 0.126076

E20 0.12500 0.125050

A30 0.03125 0.027951

C30 0.03125 0.031877

E30 0.03125 0.031340

Here, several coefficients are assigned at the same time; Nc = 4.
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to Nc = 8 (a total of 241 coefficients). In order to compare with the a/h = 4 results, for this higher-resolution

calculation we also truncated at Nc = 3 finding an improvement over the a/h = 4 results, but hardly any dif-

ference with the Nc = 8 ones, as shown in the next-to-the-last column in Table 1. The results are quite sat-

isfactory and show convergence as the grid is refined. The results of a similar test for assigned coefficients of

order (1,1), (2,0) and (3,0) are quite similar and are not shown.
The previous test was made with only one non-zero prescribed coefficient. Table 2 shows similar results

when several coefficients are prescribed. For the reasons indicated earlier we prescribe smaller coefficients

the higher their order. Here, we used a mesh with a/h = 8 and we solved for coefficients up to order Nc = 4.

Again, the results are quite good.

4.2. Uniform flow past a sphere

As a second test we consider the steady flow with a velocity w0 along the z-axis past a fixed sphere at
Reynolds numbers Re = 2aw0/m = 50 and 100 and compare our results with the spectral ones reported in

[60,61] which we use as reference.
0

0.5

1

1.5

2

2.5

3

-1.5 -1 -0.5 0 0.5 1 1.5

z/
a

x/a

Left: Physalis
Right: Bagchi

Fig. 5. The flow field in the near wake of a sphere in a uniform incident flow at Re = 50 as predicted by the present method (left) and by

the spectral calculation of [60,61]. For the present calculation, a/h = 8, Nc = 3 (46 coefficients). The arrows are placed at the collocation

points of the spectral calculation shown in Fig. 7; the present results are linearly interpolated to these points from the grid nodes used in

our calculation.
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For Re = 50 we take a computational domain with a size of 20a · 20a in the cross-stream direction and

40a in the flow direction. The sphere center is located on the line of intersection of the symmetry planes

parallel to the flow velocity (z-axis) 10a downstream of the inflow boundary. Periodic boundary conditions

are used on the domain boundaries parallel to the flow, a free outflow condition at the downstream bound-

ary, and a prescribed constant velocity condition at the inflow boundary. We use a uniform grid with a
spacing a/h = 8 for a total of 161 · 161 · 321 nodes. According to the estimate given in Section 3, for

Re = 50, the number of nodes per particle radius should be larger than about 7 and, therefore, the present

calculation is somewhat under resolved. It will be seen that nevertheless the results are good.

Our result for the drag coefficient, defined by
Fig. 6.

coordi

coeffici

ones.
CD ¼ jFhdj
1
2
pa2qw2

0

ð26Þ
is CD = 1.59, 1.58, 1.59, 1.59, and 1.58 for Nc = 2, 3, 4, 5, and 6, respectively, to be compared with the value

1.57 reported in [60,61]. The agreement is quite good, although the relative insensitivity to the order of trun-

cation Nc indicates that CD is not a very probing measure of the accuracy of the computation. It is therefore

more interesting to compare details of the flow field.
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The normalized velocity w/w0 in the direction z of the incident flow as a function of z/a for different values of the cross-stream

nate x/a = 0.0884, 0.566, 0.815, 0.940, 1.064, 1.189, 1.314, 1.439, 1.564, 1.689, 1.814, 1.939 for Re = 50; a/h = 8, Nc = 3 (46

ents). The thick line corresponds to points inside the sphere. The solid lines are the spectral results and the points the present
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Fig. 5 shows a comparison of the present results with the spectral ones in the wake region of the sphere

with Nc = 3 (46 coefficients). No appreciable differences are evident when the two results are juxtaposed in

this way. A more detailed view is given in Fig. 6, where the solid lines are the spectral solution for w/w0, the

z-velocity in the direction of the incident stream normalized by w0, the incident velocity, and the symbols

the present results. The different lines correspond to x/a = between 0.0884 and 1.938 where x is the cross-
stream direction. Although some slight differences can be observed, the agreement is quite good. This result

is particularly gratifying when the present grid (crosses) is compared with the collocation points used in the

spectral solution (dots) as in Fig. 7. It may also be noted that the present results exhibited an excellent axial

symmetry, which was not imposed at the outset. Allowing the particle to rotate resulted only in the exceed-

ingly slow rotation rate aX/w0 � 10�12.

Fig. 8 shows the normalized z-velocity w/w0 at r/a = 1.020, 1.080, 1.142, 1.222 as given by the spectral

calculation and as computed from the Stokes formulae of Appendix A with the values of the coefficients

calculated from the present method with Nc = 3. It is seen that the spectral results clearly exhibit a Stokes
flow region for r/a 6 1.142 which is very accurately reconstructed in our method. A slight difference be-

comes apparent only for the outermost line shown, r/a = 1.222. In the application of our method, the cage

nodes at which the Stokes solution is assumed to give a faithful representation of the flow field are located

at slightly different distances r/a from the sphere center along the sphere surface. In the present case, all the

cage points are located in the region r/a 6 1.077. However, about 4% of the vorticity nodes used velocity

points located between r/a 6 1.125 and 1.24, which can be expected to introduce a small error. Since the

system for the Stokes coefficients is greatly over-determined (over 2500 equations for 46 unknowns), these

out-lying nodes can be eliminated from the calculation. We have found, however, that this procedure re-
sults in only very small differences in the final results.

The convergence of the present results as the order of truncation Nc is increased is illustrated in Figs. 9

and 10. The first figure is the normalized z-velocity w/w0 at r/a = 1.0802 as calculated with different
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Fig. 7. Comparison between the nodes used in the present simulation for flow past a sphere with Re = 50 (crosses) and the collocation

points used in the spectral solution of [60,61] (dots).
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truncations, Nc = 1, 2, 3, and 4, corresponding to 10, 25, 46, and 73 coefficients, respectively. Fig. 10 shows

the same quantity in greater detail in the wake region. As Nc is increased from 1 to 3 one observes a clear

convergence of the present results to the spectral ones. A divergence begins, however, for Nc = 4 and gets

progressively worse for Nc = 5 and 6 (not shown). Exploratory calculations (which we do not describe in

detail) suggest that, with a finer grid, the range of Nc where convergence is observed increases which permits
the use of a larger Nc with a corresponding improvement of the quality of the solution. In this higher-

Reynolds number case, before encountering divergence as Nc is increased, we find a range of Nc values

where the solution converges, but its quality deteriorates. Thus, for a given resolution and a given Reynolds

number, there is an optimum value of Nc.

The calculation was repeated without increasing the resolution for Re = 100. With Nc = 2, 3, 4 and 5 the

drag coefficient was calculated to be 1.10, 1.09, 1.13, 1.09, respectively; the value reported in [60,61] is 1.09.

Fig. 11 is similar to Fig. 8 and compares, in the near-region, the spectral result for w/w0 (lines) with the

Stokes result evaluated with the coefficients calculated by the present method with Nc = 3. It is clear that
a Stokes region still exists, although smaller than before, as expected. Since we use the same number of

nodes as before, a larger fraction of them falls in a region where the Stokes flow approximation is not quite

accurate. For example, for each vorticity component, there are 170 (24%), 282 (39%), and 650 (90%) nodes

inside spheres with radii r/a = 1.020, 1.056, and 1.109, respectively. Thus, the present results, cannot be
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Fig. 8. This figure explicitly shows the existence of a Stokes region in the neighborhood of a sphere at Re = 50. The lines are the

spectral results for the normalized z-velocity w/w0 at r/a = 1.020, 1.080, 1.142, 1.222; the dots are the corresponding quantity as

computed from the Stokes formulae of Appendix A with the values of the coefficients calculated from the present method with Nc = 3.
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expected to be as accurate as those for Re = 50. Nevertheless, even if under-resolved, the method still gives

quite acceptable results, not only for the drag coefficient, but also for the entire flow field. An example is

shown in Fig. 12 which is analogous to Fig. 5 and compares the flow fields in the wake region. If one com-

pares velocities in detail some differences emerge as shown in Fig. 13.

As explained before, the expansion coefficients are determined from an over-determined system by the
SVD algorithm. One can test the quality of the solution by examining the relative error with which each

equation of the linear system is satisfied by the calculated coefficients. Specifically, the right-hand side of

the linear system for the coefficients consists of the finite-difference results for ~p and ~x. Once the system

is solved, we have coefficients which enable us to re-calculate from the expressions in Appendix A the same

quantities ~pc and ~xc. We define the relative error as j~p � ~pcj=~p, and similarly for the vorticity. For a/h = 8,

there are Np = 632 pressure nodes and Nx = 2166 vorticity nodes. For Re = 50, at steady state, the pressure
~p exceeds 5% of the maximum value at 612 nodes and, of these, 72 and 40 nodes have errors greater than

10% and 20%, respectively. For the vorticity the corresponding results are 1112 nodes, with 24 and 4
exceeding 10% and 20%.

As expected, the error is much larger for Re = 100 due to the relatively coarser resolution used in the

calculation which places many nodes out of the Stokes region. We have 604 nodes where the pressure ex-

ceeds 5% of the maximum and, of these, 76 and 52 have errors greater than 10% and 20%; for the vorticity,

the corresponding values are 1096 nodes, with 276 and 104 exceeding 10% and 20%, respectively.
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Fig. 9. Convergence of the present results as the order of truncation Nc is increased for flow past a sphere with Re = 50. The figure

shows the normalized z-velocity w/w0 at r/a = 1.0802 as calculated with different truncations, Nc = 1, 2, 3, and 4.
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4.3. Flow past periodic sphere arrays

As a third test, we calculate the pressure-driven flow past an infinite simple cubic array of spheres. If the

pressure gradient is written as
rp ¼ Pez þrp̂; ð27Þ

with ez the unit vector in the z-direction, then p̂ is periodic and the calculation can be carried out on a cubic

cell of side L = 4a with periodic boundary conditions and the particle positioned at the center of the cell. A

simple momentum balance applied to the cell shows that
P ¼ 1

1� b
F z

L3
; ð28Þ
where b ¼ 4
3
pa3=L3, with a the particle radius, is the particle volume fraction in the cell and Fz the compo-

nent of the total hydrodynamic force in the direction of the imposed pressure gradient. Monitoring the

accuracy with which (28) is satisfied gives an indication of the accuracy of the computation.

We consider first the effect of Nc, the number of coefficients retained in the expansions. Two examples are

shown in Table 3 where the values of Fz/[(1 � b)PL3] for P* ” a3P/lm = 10 and 20 calculated with a/h = 8 are
presented; the corresponding Reynolds numbers are 23.7 and 45. When Nc is increased from 1 to 9, con-

vergence failure is observed for Nc = 8 or 9, as expected on the basis of the earlier results for the uniform

incident flow calculation. The effect of Nc on the accuracy with which the pressure drop is calculated is very

small provided Nc exceeds 3. The components of F orthogonal to the applied pressure gradient are smaller
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than P* by many orders of magnitude and are not given. With P* = 5 (Re . 12.4) and a/h = 4, convergence

fails for Nc = 4. We have checked that these results are independent of which node of the computational
domain is chosen to center the particle.

The effect of fixing both a/h = 8 and Nc = 4 while varying the Reynolds number by varying the imposed

pressure gradient is shown in Table 4. The results are comparable with the earlier ones.

Another parameter of interest, the effect of which is illustrated in Table 5, is the number of grid points

per radius a/h. For Re . 12, there is little improvement as a/h is varied from 4 to 16. For Re . 24, the ben-

efit is very noticeable and especially dramatic for Re . 45 where the iteration process for a/h = 4 does not

even converge. This result illustrates the comment made earlier in Section 3 that a check of the adequacy of

the discretization is built into the method as convergence requires that all the flow fields be described by the
same set of coefficients, which would only be true in the Stokes region.

In Section 3.3, we mentioned the possibility of using a set of ‘‘standard cages’’, choosing the one centered

closest to the particle center, in place of re-building a new cage for every new particle position. The present

problem offers a good way to examine the error associated with this practice as, in theory, the result should

be completely independent of particle position. Table 6 shows the error with which (28) is satisfied for var-

ious positions of the particle center relative to a cage centered at a grid node for a3P/(lm) = 10, Nc = 4, and

a/h = 8. The biggest error, slightly greater than 3%, is found when the cage center is farthest from the par-

ticle center. Here, the cage is centered at the center of the computational domain.
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A similar test can be made moving the cage center relative to the particle, and moving both particle and

cage. The results shown in Table 7 are similar to the previous ones. It is interesting to note in these two
tables that results corresponding to equal displacements of particle or cage in different directions give

slightly different results given that the imposed pressure gradient breaks complete isotropy.

4.4. Falling particle

In all the previous examples the particle position was fixed. We now consider the case of a sphere freely

falling from rest. The motion of the sphere is calculated from (24) and (25) with the hydrodynamic force

and torque obtained from (15) and (16). For this calculation the computational domain is a cube with a
side of 4a; periodicity conditions are imposed in the z-direction, i.e. the direction of fall, while no-slip con-

ditions are imposed on the vertical boundaries. For this calculation we used a single cage, the center of

which was displaced to a neighboring node whenever the particle center left a cube of side h around
field in the near wakeofaspherein auniformincidentflow atReby the presentmethod (left) and
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Fig. 13. The normalized velocity w/w0 in the direction z of the incident flow as a function of z/a for different values of the cross-stream

coordinate x/a = 0.0884, 0.566, 0.815, 0.940, 1.064, 1.189, 1.314, 1.439, 1.564, 1.689, 1.939 for Re = 100. The thick line corresponds to

points inside the sphere. The solid lines are the spectral results and the points the present ones; Nc = 3, a/h = 8.

312 Z. Zhang, A. Prosperetti / Journal of Computational Physics 210 (2005) 292–324
the current cage center. The ratio of the particle to the fluid density is 2 and the Reynolds number based on
the terminal velocity is about 22. The particle is released at t = 0 at the center of the domain. The time step

is mDt/a2 = 0.004 and Nc = 2.
Table 3

Effect of increasing the number of coefficients in the expansions for the pressure-driven flow past a simple cubic array of spheres with

a3P/lm = 10 and 20 (Re . 23.7 and 45) and 8 cells per particle radius

Nc
F z

ð1�bÞPL3

a3P/lm = 10 a3P/lm = 20

1 1.0136 1.0190

2 1.0097 1.0110

3 0.99980 1.0002

4 0.99949 0.99830

5 0.99952 0.99944

6 0.99969 0.99594

8 1.0006 No convergence

9 No convergence –

The exact result for the quantity shown is 1.



Table 4

Accuracy vs. Reynolds number for the pressure-driven flow past a cubic array of spheres with Nc = 4, and 8 grid nodes points per

particle radius

P* Re
F z

ð1�bÞPL3

1 2.55 1.000

5 12.30 1.000

10 23.76 1.000

20 45.43 0.999

50 104.46 1.0041

100 – No convergence

The exact value is 1.

Table 5

Effect of increasing the grid resolution for the pressure-driven flow past a cubic array of spheres for a3P/lm = 5, 10, and 20

P
*

a/h
F z

ð1�bÞPL3
Nc Re

5 4 0.99428 2 12.5556

5 8 1.0000 4 12.2978

5 16 0.99982 4 12.2810

10 4 0.97831 2 24.4429

10 8 0.99949 4 23.7575

10 16 0.99981 4 23.7044

20 4 No convergence 2 –

20 8 0.99428 4 45.4344

20 16 0.99996 4 45.2917

Table 6

Normalized hydrodynamic force on a particle the center of which is displaced away from the cage center for a3P/lm = 10 (Re. 23.7),

Nc = 4, and 8 grid nodes per particle radius

Particle position
F z

ð1�bÞPL3
F z

ð1�bÞPL3
F z

ð1�bÞPL3

0.0,0.0,0.0 0.0000 0.0000 0.9995

0.0,0.0, 1
2
h 0.0000 0.0000 0.9946

1
2 h,0.0,0.0 �0.01427 0.0000 0.9984
1
2
h; 0.0; 1

2
h �0.01668 0.0000 0.9918

� 1
2
h;� 1

2
h;� 1

2
h 0.01929 �0.01929 0.9889

� 1
4
h;� 1

4
h;� 1

4
h �0.00690 �0.00690 0.9967

1
4
h; 1

4
h; 1

4
h 0.00636 0.00636 1.0008

1
2
h; 1

2
h; 1

2
h 0.01758 0.01758 1.0341

The exact results for the three columns are 0, 0, and 1, respectively.
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A point to address when the particles move is that nodes which were inside the particle at some instant,

may become cage or fluid nodes one or two time steps later. As shown in Section 3.1, our method generates

the pressure field at time level nþ 1
2
rather than n + 1. In order to calculate the coefficients at a consistent

time level, we estimate pn+1 at the cage nodes by linear extrapolation using pn� 1/2 and pn+1/2. This proce-
dure requires that pn� 1/2 be known at all cage points. Similarly, the Adams–Bashforth method for the
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Fig. 14. Normalized z-component of the instantaneous hydrodynamic force on a falling particle vs. dimensionless time mt/a2 for Nc = 2

and a/h = 4 (symbols) and 8 (line). The Reynolds number based on the terminal velocity is about 22.

Table 7

Normalized hydrodynamic force on a particle the center of which is displaced away from the cage center for a3P/lm = 10 (Re. 23.7),

Nc = 4, and 8 grid nodes per particle radius

Particle position Cage position
F z

ð1�bÞPL3
F z

ð1�bÞPL3
F z

ð1�bÞPL3

0.0,0.0,0.0 0.0,0.0,0.0 0.0000 0.0000 0.9995

0.0,0.0,0.0 1
2
h, 0.0,0.0 �0.01719 0.0000 0.9992

0.0,0.0,0.0 1
2
h; 0.0; 1

2
h �0.02235 0.0000 0.9903

1
2
h; 1

2
h; 1

2
h h,h,h �0.01929 �0.01929 0.9889

0.0,0.0,0.0 1
2
h; 1

2
h; 1

2
h �0.02751 �0.02751 0.9872

0.0,0.0, 1
2
h 0.0,0.0, 1

2
h 0.0000 0.0000 0.9987

1
2
h, 0.0,0.0 1

2
h, 0.0,0.0 �0.0000 0.0000 0.9999

1
2
h; 0.0; 1

2
h 1

2
h; 0.0; 1

2
h �0.0000 0.0000 0.9989

1
2 h;

1
2 h;

1
2 h

1
2 h;

1
2 h;

1
2 h 0.0000 �0.0000 0.9995

Except for the first line, neither the particle nor the cage are simultaneously centered at a grid node. The exact results for the three

columns are 0, 0, and 1, respectively.
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convective terms requires the values of un� 1. To ensure that the correct information is available, at the end

of each time step we use the analytic pressure solution to assign correct pressure and velocity values to a

layer of nodes inside the particle adjacent to the current cage nodes.4
4 As long as the update of the particle variables is part of the iteration, this step has minor consequences. If, however, the particle

variables are updated after the flow field, this proves to be a necessary step.
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Fig. 14 shows a graph of the z-component of the instantaneous hydrodynamic force on the particle, nor-

malized by its weight mg, as a function of the dimensionless time mt/a2 for Nc = 2 and a/h = 4 and 8. As in all

fixed-grid methods, the force is found to fluctuate somewhat as the sphere moves with respect to the under-
lying grid. The fluctuations are rather severe for the lowest resolution, a/h = 4, but are greatly reduced for a/

h = 8. For all resolutions, the fluctuation amplitude at first increases as the velocity increases, and then sat-

urates once the terminal velocity is approached. As may be expected from the absence of bias in the fluc-

tuations, the velocity, shown in Fig. 15, is smooth and essentially the same for both resolutions.

It is interesting to note that the trajectory of the particle center keeps on the centerline of the computa-

tional domain to machine precision.
5. An application to turbulent disperse flow

As a final illustration of the capabilities of the code we consider 100 particles in a weak decaying turbu-

lent field in a periodic cubic cell of side L.

To start the calculation, we use a spectral single-phase code to generate homogeneous forced isotropic

turbulence [62]. The size of the domain used with this code, discretized with 323 cells, is (16a)3 and the Tay-

lor-microscale Reynolds number at steady state approximately 29. After doubling the grid size in each

direction (for a total of 643 cells), we introduce in this turbulent flow, at random positions, 100 spheres
avoiding overlap and attributing to each one an initial velocity equal to the average fluid velocity in the
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volume it occupies. The sphere density qp is taken as 1.02 times the fluid density, with a Stokes number of

2.6. The volume fraction occupied by the spheres is about 10%. Gravity is disregarded and the collisions

modeled as elastic. At the initial time the particle radius is approximately 4.16 times the Kolmogorov scale

and 0.389 times the Taylor microscale.

In order to be able to run the simulation with the memory available on a PC, we used a mesh spacing h

(equal in all directions) such that a/h was only equal to 4, which forced us to use a small number of coef-

ficients, Nc = 1 (10 coefficients per particle). To improve efficiency, we also used the ‘‘standard cages’’ idea

described in Section 3.3, with a set of 93 = 729 different cages centered at 93 points in the neighborhood of a

grid point. At the start of the simulation the particles were slightly displaced so that their center coincided

with the closest center of a standard cage. When the calculation was terminated the Taylor Reynolds num-

ber was about 14.

The left panel in Fig. 16 shows the fluid kinetic energy at the start of the calculation t = 0; a layer of fluid

has been removed to give a better sense of the volume occupied by the particles. A similar depiction of the
fluid kinetic energy after 1 eddy turn-over time is shown in the right panel. Here, a gray scale is used with

the magnitude of the kinetic energy decreasing from the dark areas bordered by a narrow very light band,

to light, to dark again.

We are unaware of other simulations of this type with which to compare our results. Thus, for compar-

ison, we used a point-particle model in spite of the fact that, at such a large volume fraction, its justification

may be somewhat tenuous. The code used for this purpose was adapted from that described in [63]. It solves

the Navier–Stokes momentum equation augmented by the effect of the particles:
Fig. 16

been r

border
q
ou

ot
þ u � rð Þu

� �
¼ �rp þ lr2u�

XN
a¼1

fa; ð29Þ
where fa is the total hydrodynamic force on the ath particle
m
dw

dt
¼ f ¼ m

ðu� wÞ
sp

þ qv
Du

Dt
þ 1

2
qv

Du

Dt
� dw

dt

� �
þ 1

2
qvðu� wÞ � ðr � uÞ; ð30Þ
. Fluid kinetic energy at the start of the turbulence simulations (left) and after 1 eddy turn-over time (right); a layer of fluid has

emoved to show some of the 100 suspended particles. The magnitude of the kinetic energy decreases from the dark areas

ed by a narrow, very light band, to light, to dark again.
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where
Fig. 17

time).
1

sp
¼ 3

8a
CD

q
qp

ju� wj; CD ¼ 24

Rep
þ 6

1þ
ffiffiffiffiffiffiffiffi
Rep

p þ 0.4; Rep ¼
2aju� wj

m
. ð31Þ
Here sp is the particle relaxation time, v ¼ 4
3
pa3 the particle volume, Rep the particle Reynolds number, and

CD the drag coefficient; the Basset force is neglected. In Eq. (30) the force is interpolated to the grid nodes in

the usual way.

The maximum value of Rep in the course of the simulation was about 40. It is not obvious how to define

a corresponding quantity for the extended-particle calculation because in this case there is no well-defined

‘‘undisturbed’’ fluid velocity u. The analogous quantity 2ajwj/m based on the particle velocity has a maxi-

mum value of about 80. However, since the density of the particle is only 2% greater than that of the fluid,

it is likely that the fluid-particle relative velocity is smaller than jwj, which shows that the previous estimate

is most likely a very conservative upper limit.
Fig. 17 compares the turbulent kinetic energy, normalized by the initial value, vs. time, normalized by

the eddy turn-over time, as obtained from our simulation (solid line) with the point-particle result (29), with

and without two-way coupling, i.e., including (dotted line) or excluding (dashed line) the last term in this

equation. As expected, two-way coupling increases the dissipation rate over that of the pure fluid, and the

extended particles increase it further.

Fig. 18 shows the square of the mean particle displacement from the initial position vs. time as obtained

from our simulation (solid line) with the point-particle result (29) with (dotted line) and without (dashed
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line) two-way coupling. The two simulations with a coupling between the particles and the fluid show the

expected long-time behavior with the square of the mean particle displacement a linear function of time.

The extended particles, however, diffuse slightly more slowly than the point particles, as expected.

A way to illustrate the effect of turbulence on the distribution of the particles is to study the structure

factor (see e.g. [64, p. 7]; [65, p. 33]) integrated over the angular variables:
SðkÞ ¼ 1þ 1

N

XN
a;b¼1
a 6¼b

Z
dX cos k � ya � yb

� �
. ð32Þ
Here, y denotes the position of the particle center and k = (2p/L)(i,j,k), with i,j,k integers between 0 and 8

(not all simultaneously 0) and k = jkj. The structure factor is the Fourier transform of the two-particle dis-
tribution function

3

gðrÞ ¼ 1þ L3

2p2Nr

Z
dk SðkÞ � 1½ �k sin kr ð33Þ
F
t

and, accordingly, it gives information on the mutual distance between the particles. Loosely speaking, one
may say that maxima of S(k) correspond to a higher probability of finding particle pairs separated by 2p/k.

Fig. 19 shows S(k) as a function of k/kmin, with kmin = 2p/L, after 2 eddy turn-over times for the extended

particles and the point-particle model with and without two-way coupling; the thick dotted line is the hard-

sphere distribution [66–68]. Results corresponding to the lower values of kL/2p are strongly affected by the
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artificial periodicity imposed on the system; touching particles correspond to k/kmin = 8. One notices that the

maximum for k/kmin . 6.5 is greater for the extended-particle simulation (solid line) than for the two-way

coupled, point-particle model (dotted line), which suggests, in the mean, a tendency of the extended particles

to cluster more than the point particles. For k/kmin P 4, S(k) for the one-way coupled point particles is close

to 1 which, as shown by Eq. (33), implies a close-to-uniform distribution. The fact that this constant value is
achieved for k/kmin . 4 gives an idea of the range of k-values affected by the artificial periodicity.

In view of the limited accuracy of this calculation (the purpose of which is more to illustrate the appli-

cability of the method than to obtain specific results) one may perhaps not want to make too much of these

results. However, it may be noted that, even with an elastic collision, two extended particles would produce

a relatively large viscous dissipation as they approach and push out the fluid that separates them.
6. Conclusions

We have described a computational method for the simulation of Navier–Stokes flow with suspended

spherical particles. We have devoted a considerable effort to the validation of the method against indepen-

dent accurate results and have found it to be efficient and accurate.

A useful feature of our approach is that the degrees of freedom attributed to each particle are used in a

nearly-optimal way, as the summations in which the coefficients appear converge spectrally for smooth flow
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fields. Another significant advantage is that the force and torque on each particle are found directly from

the low-order coefficients as shown in (15) and (16). This avoids the difficulty encountered with some other

methods which require high-order extrapolations to obtain the stress distribution on the particle.

The accuracy of the method can be increased arbitrarily by increasing the number of nodes with the

effect, among others, of reducing the extent of the region where applicability of the Stokes equations is
assumed. This procedure permits to increase the number of coefficients retained in the exact solution.

A limitation of our approach is the reliance on the existence of an exact solution of the Stokes equations

for the particular body shape considered. Such solutions are available for cylinders and spheres. A possible

way to deal with more general body shapes would be to use a boundary integral solution of the Stokes

equations (see e.g. [69]) in the thin region between the body and the cage. Spectral convergence in this case

would however not be automatic and would depend on the solution procedure of the integral equations.

Another limitation stems from the explicit use of the no-slip condition to effect a local linearization about

solid body motion. Unlike other methods capable of dealing with rigid and free complex boundaries, it does
not appear possible to extend the present method to problems with free surfaces.

Ref. [70] presents some preliminary results obtained with a first-order time-accurate version of the pres-

ent method implemented on a parallel computer. Some further validation tests are provided, and a simu-

lation of the settling of 1024 spheres described.
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Appendix A. Detailed formulae for pressure, vorticity, and velocity

From (7) and (8) expressions for the Stokes pressure, velocity, and vorticity fields readily follow. We

present these expressions in terms of dimensionless quantities defined by
s ¼ r
a
; p� ¼ a2

lm
~p; u� ¼ a

m
~u; x� ¼ a2

m
~x. ðA:1Þ
The pressure field is given by
p� ¼ p0 þ
X1
n¼0

sn � nð2n� 1Þ
2ðnþ 1Þ s�n�1

� �Xn
m¼0

½Pnm cosðm/Þ þ ~Pnm sinðm/Þ�Pm
n ðcos hÞ

(

� nð4n2 � 1Þ
nþ 1

s�n�1
Xn
m¼0

½Unm cosðm/Þ þ ~Unm sinðm/Þ�Pm
n ðcos hÞ

)
. ðA:2Þ
The velocity components follow from (6) as:
u�r ¼
X1
n¼1

n
2ð2nþ 3Þ s

nþ1 � n
4
s�n þ nð2nþ 1Þ

4ð2nþ 3Þ s
�n�2

� �Xn
m¼0

Pnm cosðm/Þ þ ~Pnm sinðm/Þ
� 	

Pm
n ðcos hÞ

(

þ nsn�1 þ nð2nþ 1Þ
2

s�n þ nð2n� 1Þ
2

s�n�2

� �Xn
m¼0

Unm cosðm/Þ þ ~Unm sinðm/Þ
� 	

Pm
n ðcos hÞ

)
; ðA:3Þ
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u�h ¼
X1
n¼1

(
nþ 3

2ðnþ 1Þð2nþ 3Þ s
nþ1 � n� 2

4ðnþ 1Þ s
�n � nð2nþ 1Þ

4ðnþ 1Þð2nþ 3Þ s
�n�2

� �

�
Xn
m¼0

½Pnm cosðm/Þ þ ~Pnm sinðm/Þ�
dPm

n ðcos hÞ
dh

þ sn�1 þ ðn� 2Þð2nþ 1Þ
2ðnþ 1Þ s�n � nð2n� 1Þ

2ðnþ 1Þ s�n�2

� �

�
Xn
m¼0

½Unm cosðm/Þ þ ~Unm sinðm/Þ�
dPm

n ðcos hÞ
dh

þðsn � s�n�1Þ
Xn
m¼0

½�mXnm cosðm/Þ þ mXnm sinðm/Þ�
Pm
n ðcos hÞ
sin h

)
; ðA:4Þ

u�/ ¼
X1
n¼1

(
nþ 3

2ðnþ 1Þð2nþ 3Þ s
nþ1 � n� 2

4ðnþ 1Þ s
�n � nð2nþ 1Þ

4ðnþ 1Þð2nþ 3Þ s
�n�2

� �

�
Xn
m¼0

½�mPnm sinðm/Þ þ m~Pnm cosðm/Þ�
Pm
n ðcos hÞ
sin h

þ sn�1 þ ðn� 2Þð2nþ 1Þ
2ðnþ 1Þ s�n � nð2n� 1Þ

2ðnþ 1Þ s�n�2

� �

�
Xn
m¼0

½�mUnm sinðm/Þ þ m~Unm cosðm/Þ�
Pm
n ðcos hÞ
sin h

�ðsn � s�n�1Þ
Xn
m¼0

½Xnm cosðm/Þ þ ~Xnm sinðm/Þ�
dPm

n ðcos hÞ
dh

)
. ðA:5Þ
The vorticity components are, from (12):
x�
r ¼

X1
n¼1

nðnþ 1Þðsn�1 � s�n�2Þ
Xn
m¼0

½Xnm cosðm/Þ þ ~Xnm sinðm/Þ�Pm
n ðcos hÞ

( )
; ðA:6Þ

x�
h ¼

X1
n¼1

� sn

nþ 1
þ 2n� 1

2ðnþ 1Þ s
�n�1

� �Xn
m¼0

½�mPnm sinðm/Þ þ m~Pnm cosðm/Þ�
Pm
n ðcos hÞ
sin h

(

� 4n2 � 1

nþ 1
s�n�1

Xn
m¼0

1

sin h
½�mUnm sinðm/Þ þ m~Unm cosðm/Þ�

Pm
n ðcos hÞ
sin h

þ½ðnþ 2Þsn�1 þ ðn� 1Þs�n�2�
Xn
m¼0

½Xnm cosðm/Þ þ ~Xnm sinðm/Þ�
dPm

n ðcos hÞ
dh

)
; ðA:7Þ

x�
/ ¼

X1
n¼1

sn

nþ 1
þ 2n� 1

2ðnþ 1Þ s
�n�1

� �Xn
m¼0

½Pnm cosðm/Þ þ ~Pnm sinðm/Þ�
dPm

n ðcos hÞ
dh

(

þ 4n2 � 1

nþ 1
s�n�1

Xn
m¼0

½Um
n cosðm/Þ þ ~Unm sinðm/Þ�

dPm
n ðcos hÞ
dh

þ½ðnþ 2Þsn�1 þ ðn� 1Þs�n�2�
Xn
m¼0

½�mXnm sinðm/Þ þ m~Xnm cosðm/Þ�Pm
n ðcos hÞ

)
. ðA:8Þ



322 Z. Zhang, A. Prosperetti / Journal of Computational Physics 210 (2005) 292–324
References

[1] S. Takagi, H. O~guz, Z. Z, A. Prosperetti, PHYSALIS: A new method particle simulation. Part II: Two-dimensional Navier–Stokes

flow around cylinders, J. Comput. Phys. 187 (2003) 371–390.

[2] Z. Zhang, A. Prosperetti, A method for particle simulation, J. Appl. Mech. 70 (2003) 64–74.

[3] S. Elghobashi, T. G.C., On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence

modification, Phys. Fluids A 5 (1993) 1790–1801.

[4] C. Crowe, T. Troutt, J. Chung, Numerical models for two-phase turbulent flows, Ann. Rev. Fluid Mech. 28 (1996) 11–41.

[5] Y. Pan, S. Banerjee, Numerical simulation of particle interactions with wall turbulence, Phys. Fluids 8 (1996) 2733–2755.

[6] S. Sundaram, L. Collins, A numerical study of the modulation of isotropic turbulence by suspended particles, J. Fluid Mech. 379

(1999) 105–143.

[7] V. Armenio, U. Piomelli, V. Fiorotto, Effect of the subgrid scales on particle motion, Phys. Fluids 11 (1999) 3030–3042.

[8] M. Boivin, O. Simonin, K. Squires, On the prediction of gas–solid flows with two-way coupling using large eddy, Phys. Fluids 12

(2000) 2080–2090.

[9] Y. Yamamoto, M. Potthoff, T. Tanaka, T. Kajishima, Y. Tsuji, Large-eddy simulation of turbulent gas-particle flow in a vertical

channel: effect of considering inter-particle collisions, J. Fluid Mech. 442 (2001) 303–334.

[10] A. Fortes, D. Joseph, T. Lundgren, Nonlinear mechanics of fluidization of beds of spherical particles, J. Fluid Mech. 177 (1987)

467–483.

[11] H. Hu, D. Joseph, M. Crochet, Direct simulation of fluid-particle motions, Theor. Comput. Fluid Dynam. 3 (1992) 285–306.

[12] R. Glowinski, T. Pan, T. Hesla, D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int.

J. Multiphase Flow 25 (1999) 755–794.

[13] N. Patankar, P. Singh, D. Joseph, R. Glowinski, T.-W. Pan, A new formulation of the distributed Lagrange multiplier/fictitious

domain method for particulate flows, Int. J. Multiphase Flow 26 (2000) 1509–1524.

[14] P. Singh, T. Hesla, D. Joseph, Distributed Lagrangian multiplier method for particulate flows with collisions, Int. J. Multiphase

Flow 29 (2001) 495–509.

[15] S. Dong, D. Liu, M.R. Maxey, G.E. Karniadakis, Spectral distributed Lagrange multiplier method: algorithm and benchmark

tests, J. Comput. Phys. 195 (2004) 695–717.

[16] A. Johnson, T. T., Simulation of multiple spheres falling in a liquid-filled tube, Comp. Meth. Appl. Mech. Eng. 134 (1996) 351–

373.

[17] A. Johnson, T. T., 3-D simulation of fluid-particle interactions with the number of particles reaching 100, Comp. Meth. Appl.

Mech. Eng. 145 (1997) 301–321.

[18] J. Chattot, Y. Wang, Improved treatment of intersecting bodies with the Chimera method and validation with a simple and fast

flow solver, Comput. Fluids 27 (1998) 721–740.

[19] H. Nirschl, H. Dwyer, V. Denk, Three-dimensional calculations of the simple shear flow around a single particle between two

moving walls, J. Fluid Mech. 283 (1995) 273–285.

[20] C. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220.

[21] C. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479–517.

[22] Y. Pan, S. Banerjee, Numerical investigation of the effect of large particles on wall turbulence, Phys. Fluids 9 (1997) 3786–3807.

[23] S. Takiguchi, T. Kajishima, Y. Miyake, Numerical scheme to resolve the interaction between solid particles and fluid turbulence,

JSME Int. J. B 42 (1999) 411–418.

[24] T. Ye, R. Mittal, H. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex

immersed boundaries, J. Comput. Phys. 156 (1999) 209–240.

[25] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with

complex moving boundaries, J. Comput. Phys. 174 (2001) 345–380.

[26] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-

dimensional complex flow simulations, J. Comput. Phys. 161 (2000) 35–60.

[27] Z. Li, M.-C. Lai, The immersed interface method fro Navier–Stokes equations with singular forces, J. Comput. Phys. 171 (2001)

822–842.

[28] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J.

Comput. Phys. 171 (2001) 132–150.

[29] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed

boundaries on Cartesian grids, J. Comput. Phys. 191 (2003) 660–669.

[30] Y.-H. Tseng, J. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys. 192 (2003)

593–623.

[31] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Comput.

Fluids 33 (2004) 375–404.



Z. Zhang, A. Prosperetti / Journal of Computational Physics 210 (2005) 292–324 323
[32] A. Gilmanov, F. Sotiropoulos, A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically

complex, moving bodies, J. Comput. Phys., in press.

[33] S. Chen, G. Doolen, Lattice Boltzmann method in fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329–364.

[34] C. Aidun, Y. Lu, E.-J. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid

Mech. 37 (1998) 287–311.

[35] T. Inamuro, K. Maeba, F. Ogino, Flow between parallel walls containing the lines of neutrally buoyant circular cylinders, Int. J.

Multiphase Flow 26 (2000) 1981–2004.

[36] R.J. Hill, D.L. Koch, The transition from steady to weakly turbulent flow in a close-packed ordered array of spheres, J. Fluid

Mech. 465 (2002) 59–97.

[37] Z.-G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid particles interaction problems,

J. Comput. Phys. 195 (2004) 602–628.

[38] Z.-G. Feng, E.E. Michaelides, Proteus: A direct forcing method in the simulations of particulate flows, J. Comput. Phys. 202

(2005) 20–51.

[39] H. Huang, S. Takagi, PHYSALIS: A new method for particle flow simulation. Part III: Convergence analysis of two-dimensional

flows, J. Comput. Phys. 189 (2003) 493–511.

[40] W. Kalthoff, S. Schwarzer, H.J. Herrmann, Algorithm for the simulation of particle suspensions with inertia effects, Phys. Rev. E

56 (1997) 2234–2242.

[41] N. Martys, D. Bentz, E. Garboczi, Computer simulation study of the effective viscosity in Brinkman�s equation, Phys. Fluids 6
(1994) 1434–1439.

[42] E.M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J.

Comput. Phys. 123 (1996) 450–465.

[43] J. Keller, D. Givoli, Exact nonreflecting boundary conditions, J. Comput. Phys. 82 (1989) 172–192.

[44] D. Givoli, Numerical methods for problems in infinite domains, Elsevier, Amsterdam, 1992.

[45] D. Givoli, L. Rivkin, J. Keller, A finite-element method for domains with corners, Int. J. Numer. Meth. Eng. 35 (1992) 1329–1345.

[46] D. Givoli, I. Patlashenko, J. Keller, High-order boundary conditions and finite elements for infinite domains, Comput. Method

Appl. M 143 (1997) 13–39.

[47] P. Bjorstad, O. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J.

Numer. Anal. 23 (1986) 1097–1120.

[48] F. Nataf, F. Nier, Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains,

Numer. Math. 75 (1997) 357–377.

[49] A. Quarteroni, A. Valli, Somain decomposition methods for partial differential equations, Oxford Science Publishers, Oxford,

1999.

[50] W. Proskurowski, O. Widlund, Numerical solution of Helmholtz�s equation by capacitance matrix method, Math. Comput. 135

(1976) 433–468.

[51] W. Proskurowski, Numerical solution of eigenvalue problem of Laplace operator by a capacitance matrix method, Computing 20

(1978) 139–151.

[52] C. Borgers, Domain embedding methods for the Stokes equations, Numer. Math. 57 (1990) 435–451.

[53] H. Lamb, Hydrodynamics, sixth ed., Cambridge U.P., Cambridge, 1932.

[54] S. Kim, S. Karrila, Microhydrodynamics, Butterworth-Heinemann, Boston, 1991.

[55] D. Brown, R. Cortez, M. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput.

Phys. 168 (2001) 464–499.

[56] A. Prosperetti, H. O~guz, PHYSALIS: A new o(N) method for the numerical simulation of disperse flows of spheres. Part I: Potential

flow, J. Comput. Phys. 167 (2001) 196–216.

[57] G. Mo, A. Sangani, A method for computing Stokes flow interactions among spherical objects and its application to suspensions

of drops and porous particles, Phys. Fluids 6 (1994) 1637–1652.

[58] R. Kress, Linear integral equations, Springer, Berlin, 1989.

[59] W. Press, W. Vetterling, S. Teukolsky, B. Flannery, Numerical recipes in FORTRAN, second ed., Cambridge U.P., Cambridge,

1992.

[60] P. Bagchi, S. Balachandar, Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow, J. Fluids.

Eng. 123 (2001) 347–358.

[61] P. Bagchi, Particle dynamics in inhomogeneous flows at moderate-to-high Reynolds number, Ph.D. Thesis, University of Illinois,

Urbana, IL, 2002.

[62] J.R. Mansfield, O.M. Knio, C. Meneveau, A dynamic LES scheme for the vorticity transport equation: Formulation and a priori

tests, J. Comput. Phys. 145 (1998) 693–730.

[63] M.I. M., D. Lohse, F. Toschi, On the relevance of the lift force in bubbly turbulence, J. Fluid Mech. 488 (2003) 283–313.

[64] U. Balucani, M. Zoppi, Dynamics of the liquid state, Clarendon Press, Oxford, 1994.

[65] P. Chaikin, T. Lubensky, Principles of condensed matter physics, Cambridge U.P., Cambridge, UK, 1995.



324 Z. Zhang, A. Prosperetti / Journal of Computational Physics 210 (2005) 292–324
[66] J. Percus, G. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev. 110 (1958) 1–13.

[67] M.S. Wertheim, Exact solution of the Percus–Yevick integral equation for hard spheres, Phys. Rev. Lett. 10 (1963) 321–323.

[68] E. Thiele, Equation of state for hard spheres, J. Chem. Phys. 39 (1963) 474–479.

[69] C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge U.P., Cambridge, 1992.

[70] Z. Zhang, A. Prosperetti, Sedimentation of 1024 particles, in: Proceedings of the fluids engineering division summer meeting,

ASME, New York, 2005.

[71] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flow, J. Comput. Phys. (2005),

in press.


	A second-order method for three-dimensional particle simulation
	Introduction
	Reduction to the rest frame
	Implementation
	Flow solver
	Truncation and matching
	Cage
	Spatial resolution

	Validation
	Stokes flow
	Uniform flow past a sphere
	Flow past periodic sphere arrays
	Falling particle

	An application to turbulent disperse flow
	Conclusions
	Acknowledgments
	Detailed formulae for pressure, vorticity, and velocity
	References


